以铅酸电池和锂离子电池为代表的二次电池,为了提高充放电特性、耐久性等性能,一般会向电解液中添加添加剂。到目前为止,已有种类繁多而且性能优异的添加剂被广泛使用到各类二次电池中。然而,迄今为止,这些添加剂如何提高电池性能的原理仍不甚明了。观察电解质中负附近的界面状态对于阐明添加剂的贡献很重要。
铅酸电池是一种具有多种优点的二次电池,宽工作温度范围和大电流放电。由于这些原因,它们被广泛应用于不间断电源(UPS)设备、公共设施应急电源设备以及汽车发动机启停系统的启动电池,成为社会基础设施不可或缺的一部分。然而,铅酸电池在使用过程中会发生负的硫酸盐化,并因此导致电池性能劣化。在电解液中增加添加剂可以缓解这一问题。磺化木质素是一种具有代表性的添加剂。然而,但木质素如何促进电化学反应和硫酸化的缓解直到现在仍未阐明。
SPM-8100FM使用调频(FM)方法可以检测到比传统原子力显微镜(AFM)更小的力。因此使用SPM-8100FM高分辨率原子力显微镜和电化学溶液电池,观察稀硫酸环境下铅的固液界面状态,有助于理解添加剂的作用原理。
以上两张图显示了在初始还原反应后对垂直于铅表面的截面进行成像得到的负(铅)固液界面处的图像。图像的上半部分是电解液,图像下半部分变暗的位置是铅表面。探针检测到力(排斥力)的部分看起来很亮。
在左图仅有稀硫酸的情况下,在铅表面上方没有观察到明显的特异变化。但在右图中,使用“稀硫酸+木质素”的情况下,可以在铅表面上方看到明显的不同亮度分层,如图中红色箭头所示区域。判断该层为木质素-铅络合物,该层的存在有助于铅表面硫酸化程度降低,从而有效控制了硫酸铅的结晶形成。木质素-铅层的与铅表面、液体部分的不同亮度对比表明探针已经深入到该层中,同时也表明木质素-铅层以柔软的状态吸附在铅表面。这是使用原子力显微镜在铅表面上看到厚度为50nm至100nm的木质素-铅层。
该实验证明了用高分辨原子力显微镜对电化学表面进行观察的可能性,有助于获得更多的电催化过程中界面处的信息,从而提高我们对反应过程的理解。因此可以期待利用SPM-8100FM进行电解质的界面成像来分析其他类型的二次电池充放电过程固液界面处的状态变化。
免责声明:本平台文章均系转载,版权归原作者所有。所转载文章并不代表本网站赞同其观点和对其真实性负责。如涉及作品版权问题,请及时联系我们,我们将作删除处理以保证您的权益!