400-886-0902
您的位置:首页 > 客户服务 > 技术资料 > 岛津原子力显微镜技术发展历程

岛津原子力显微镜技术发展历程

提供来源:上海百贺 日期:2021年05月13日

人类探索的脚步从未停止。为了看得更细,看得更清。列文虎克发明了显微镜,成为人类利用工具观察世界的肇始。

从此,光学成为显微镜的支配性规律。自十七世纪到二十世纪初,光学显微镜完成了几乎所有类型的研发、设计和定型。但因为衍射的发现,似乎提高观察的分辨率只有改进光源这一种路径。激光的发明成为光学显微镜在分辨率上的努力。

十九世纪初电子的发现,以及微观粒子的波粒二象性特性的揭示,成为了电子显微镜的基础。但是电子显微镜实际上可以看做光学显微镜在量子力学下的延伸。用加速电子束替代了传统光源,用磁透镜/静电透镜代替了透明介质透镜,可是几乎所有的理论结构都与光学显微镜一致。二十世纪三十年代电子显微镜被发明至今,其分辨率被提高到亚纳米级别,距离原子级分辨似乎只有一步之遥。

但是自然界被物理铁律支配,这一步似乎近在咫尺,但却云崖天隔。二十一世纪的电子显微镜已经进入了和二十世纪光学显微镜同样的境地,只能在不断改进各部件的精度中一丝一毫地改进图像,但无法跨越的鸿沟。

量子力学成为了新一代显微镜的理论基础。1981年,隧道扫描显微镜被发明,一种全新的显微镜横空出世。它不同于光学显微镜和电子显微镜,完全摆脱了对检测介质的依赖,以微粒间的作用(电、力)为检测信号,一举突破了原子级别的分辨率。随后在1985年被发明的原子力显微镜,更是将适用对象从金属和半导体拓展到所有的固体。

这是一种全新的显微方法和工具,从二十世纪八十年代末到九十年代初,全球各主要科技强国纷纷开展了扫描探针显微镜的研发。


也正是在这个时期,岛津开始涉足该领域。1991年,基于真空环境的隧道扫描显微镜AIS-900面世。

相对于在大气环境下的隧道扫描显微镜,真空环境是其工作环境更为简单,图像分辨率和清晰程度都更高,工作也更稳定。

虽然真空环境带来了分辨率的提高,但是同时也限制了样品的测试和操作的便利性。为此,1993年,岛津开发了兼容多种环境的WET-901,同时可以满足对大气环境、真空环境、特殊气氛、液体环境、电化学环境等不同要求。WET-901和随后的WET-9400代表着岛津敏锐地意识到,随着原子力显微镜的不断完善,微区观测技术必然会对原位分析产生重要的影响。因此,岛津持续不断地改进环境控制舱,应对不同时期科研领域的需求。

紧接着在1995年,岛津推出了成功的SPM-9500系列。二十世纪九十年代中后期是原子力显微镜大发展的时期,各种扫描模式从实验室走向实用。从1995年2001年,岛津SPM-9500系列也历经SPM-9500、SPM-9500J、SPM-9500J2、SPM-9500J3四个型号,不断吸收新的功能模式。

随后的SPM-9600(2005年)、SPM-9700(2010年)、SPM-9700HT(2016年)基本都延续了SPM-9500的基本结构,通过不断改进控制器,提高分辨率,增加新功能,改善操作性。

在这个时期,商用原子力显微镜陷入了一个发展瓶颈,功能模式固化,应用领域受限,每个厂家都在不同的方向上尝试新的突破。有的厂商开始匹配半导体工业的需求,有的则在生命科学领域进行研发。

岛津也在思考什么才是原子力显微镜的发展根本?

不识庐山真面目,只缘身在此山中。经过大量的思考和尝试,一切回归本源——分辨率。只有分辨率才是显微镜核心的技术指标。于是在2014年推出了调频型原子显微镜SPM-8000FM并在2017年升级为SPM-8100FM。该系列核心的技术是调频控制探针,利用频率对作用力的分辨率和反馈速度远高于振幅的特点,实现了在大气和液体环境中原子/分子级的分辨率。


利用调频模式对作用力的高分辨检测能力,还成功地将原子力显微镜的应用从固体表面观察拓展到固液界面的水合化和溶剂化作用。这项技术有助于电池和摩擦学等领域的前沿研究。

近十年,随着原子力显微镜对不同应用领域的拓展,新的技术和新的需求也在不断涌现。

 

声明:文章来源于公众号岛津科技资讯通旨在分享若涉及版权问题请电话联系